細孔における熱力学に基づくコンクリートの凍結変形に関する解析的研究

1. はじめに

コンクリートの細孔中の液水が凍結して氷になると, 氷の体積膨張圧が作用し,膨張変形が生じる。この膨張 圧が過大に作用すると,細孔壁が破壊し,コンクリート の凍害劣化損傷に至る。ここで,細孔中の液水と氷と水 蒸気の状態変化や作用圧力は,ケルビン半径と凝固点・ 融点降下と吸着水と凍結可能自由水の関係といった細孔 における熱力学を適切に適用することで定量化できると 考えられるが,これら一連の細孔における熱力学を正し く合理的に適用した例は,ほとんど見当たらない。

本研究は,細孔における熱力学で凍結変形を取り扱っ て優れた研究と認識されている既往文献が,細孔におけ る熱力学を正しく適用せず,間違っていることを見いだ し,その間違いを正した合理的な解析方法を提示する。

2. 既往文献の間違いの指摘

既往文献は,第1著者の周が東北大学博士論文として 2003年に発表し,同年,査読有りの日本コンクリート工 学会 JCI 論文集で日本語発表されるとともに,ほぼ同じ 内容が,2008年に査読有りのアメリカ土木学会 ASCE 論文集で英語発表され,細孔における熱力学で凍結変形 を取り扱った優れた研究と認識されている。

これら JCI 論文と ASCE 論文を比較すると,論文最後 の凍結変形解析結果は同じまま,図1に示すように,凍 結融解試験時温度と細孔中の相対湿度の関係が,JCI 論 文で100%rh 以上の結果を明示し,一方,ASCE 論文で は約5%rh 低下の100%rh 未満の結果を明示している。

両論文とも前半で細孔における熱力学の理論を示して いるが、ここで指摘した細孔中の相対湿度の取扱い相違 点による状況から、凍結変形解析時に細孔における熱力 学を正しく適用していないことが考えられる。

3. 細孔における熱力学に基づく凍結水量算定式の導出

図2に凍結時の細孔における熱力学の概要を示す。細 孔径分布に、ある相対湿度を与えると、ケルビン半径 \mathbf{r}_k と吸着水膜厚tが求められ、細孔半径rからtを差し引 いたr-tが、rkよりも小さい $\mathbf{r}_k \ge \mathbf{r} - \mathbf{t}$ のときに、相対湿 度に対する水蒸気が凝縮して液水の自由水になる。また、 液水の融解エンタルピーLと、氷と液水の固液界面張力 γ_{sl} と、過冷却にて標準の凝固点・融点 \mathbf{T}_0 から降下した 過冷却凝固点・融点 \mathbf{T}_T の変化 $\Delta \mathbf{T} = \mathbf{T}_0 - \mathbf{T}_T$ から、凍結最 小半径 \mathbf{r}_T が求められる。それで、t は氷にならず液水の ままが熱力学的に安定しており、 \mathbf{r}_k に従う凝縮自由水か ら、凍結可能な \mathbf{r}_T にtを加えた $\mathbf{r}_T + \mathbf{t}$ を差し引いた $\mathbf{r}_k -$ ($\mathbf{r}_T + \mathbf{t}$)が、凍結可能な凝縮自由水半径を表すことになる。

1.05 -----0.95 0.95 日の相対関係 SII諸文の権利。中の相対過度 0.95 0.85 0.85 0.85 0.9 0.85 0.75 凍結融解試験時温度(℃) 図1 既往文献での細孔中の相対湿度の取扱い相違点 水蒸気 $r_{T} = -\frac{2T_{0}\gamma_{sl}V_{i}\cos(\emptyset)}{2}$ $\frac{1}{2} \cdot \frac{\gamma_{lg} \cdot \cos(\theta_0) \cdot \rho_g}{(2 - \alpha)}$ $r_k = \left| -\frac{1}{p_{s\infty}} \right|$ $(\rho_l - \rho_a)$ (RH - 1) $L \cdot \Delta T$

図2 凍結時の細孔における熱力学の概要

それで、細孔径分布に対する区間の凝縮自由水の凍結 可能体積 ΔV_{rkT} [m³/m³]について、次の論理式を導出した。 if [(t<r) & (r_k>=(r-t)) & (T<(T_T or T₀)) & (r_T<r_k) & (r_T<(r-t))] then (ΔV_{rk} = $\pi \cdot$ (r-t)²· Δ]) else (ΔV_{rkT} =0)

4. 細孔における熱力学による解析結果および考察

周の博士論文やJCI 論文やASCE 論文では, 飽和度 s (原文では β)の算定方法が明示されておらず, 博士論 文にて, ケルビン半径 r_k の凝縮が起きたら s=1 で, 凝縮 しないとき s=0 とすることのみ, 記述されている。

ある相対水蒸気圧 $p_{sr}/p_{s\infty}$ 下の累加細孔容積中には, 累加液水体積 $Vws = Vr_ks + Vts$ が充填し, 全細孔容積 Vo中の割合で表したものが飽和度 s になる。全細孔容積 Vo中に対する累加吸着水体積 Vts での飽和度 st = Vts / Vo, 全細孔容積 Vo 中に対する累加凝縮自由水体積 Vr_ks での 飽和度 $sr_k = Vr_ks / Vo$, 全細孔容積 Vo 中に対する累加液 水体積 Vws での飽和度 $sw = st + sr_k = Vws / Vo$ となる。

図3に相対湿度100%rh以上のJCI論文条件の飽和度 sを解析した結果を示す。-15℃までs=1で、細孔中の 水分の状態変化を、厳密に熱力学計算しなくても、細孔 容積を細孔中自由水体積と見なして計算できる。周らは、 -15℃までs=1で、-15℃より低い温度でs=0として、 簡易に取り扱ったものと考えられる。

図4に相対湿度100%rh 未満のASCE 論文条件の飽和 度 s を解析した結果を示す。最大 s=0.6 で,周らの s=0 か s=1 の方法では s=0 として取り扱うしかないが,細孔 における熱力学を正しく適用すると s が求められる。

213-090 中田 ひとみ

図4ASCE 論文の相対湿度による熱力学量と飽和度 s 図5と図6にJCI 論文とASCE 論文の相対湿度条件 に基づく凍結水量と凍結膨張線歪みの解析結果を示す。 凍結膨張線歪みの基点は過冷却凝固点・融点 Trとした。 最終的な膨張歪みは,飽和度 s=1 で近似できる条件で周 らと本研究の結果がほぼ同じであるが,ASCE 論文の約 5%rh低下での s<1条件で周らの膨張歪みが0の不合理 な結果になり,本研究の対応が有効であることがわかる。

図 6 ASCE 論文条件の累加凍結水量と凍結水膨張線歪み 5.まとめ

細孔における熱力学に着目し、コンクリートの凍結変 形にて優れた研究と認識の既往文献の間違いを正した凍

結変形の解析方法を提示できた。 (中村研究室) 参考文献 1) 周志云: コンクリートの凍害による劣化現象の微視的メカニズ ムとそのモデル化に関する基礎的研究,東北大学博士論文,2003.1,2) 三橋 博三,周志云,多田眞作:微視的メカニズムを考慮したコンクリートの凍結 作用による変形挙動の数理モデル,コンクリート工学論文集,Vol.14, No.3, pp.33・44,2003.9,3) Zhou,Z. Y., Mihashi,H.: Micromechanics Model to Describe Strain Behavior of Concrete in Freezing Process, Journal of Materials in Civil Engineering, ASCE, Vol.20, No. 1, pp.46-53, 2008.1